《通信局(站)雷电过电压保护工程设计规范》(YD/T 5098-2001)条文说明


通信局(站)雷电过电压保护工程设计规范

(YD/T 5098-2001)

条文说明

 

1 总 则

  1.0.1 近年来虽然对通信局(站)建筑物的防雷接地进行了大量的改进,但雷电产生的浪涌电流还是造成通信设备的损坏,雷击使通信中断的事故时有发生,根据国内外有关资料和信息产业部邮电设计院对全国10几个省通信局站遭雷击情况的统计,雷击造成通信设备损坏事故的 85% 是雷电过电压引起的,因此对通信局(站)雷电过电压的保护就更为重要。为防止和减少通信局(站)因雷电感应引入的雷害,确保通信设备的安全和正常工作,特制定本规范。
  1.0.4 通信局(站)雷电过电压保护并非是简单的、单一的雷电过电压保护器件应用,而是应用电磁兼容的原理,根据防雷区的划分,对一个通信局(站)进行综合、多级雷电过电压保护。
  通信局(站)传统的雷电浪涌保护方法,在选择浪涌 SPD 时,仅考虑被保护的通信设备本身,没有根据电磁兼容(EMC)原理,把局部或单一的防护措施归结到系统防雷,即整体防护概念。由于缺乏通信局(站)系统观念,导致在通信局(站)电源系统,甚至在雷电防护薄弱环节的不同点安装过电压保护器时,各类防护器件之间不能相互协调,相互之间不能控制。由于防护器件在设计时,其防护性能仅考虑了被保护设备本身的需求,而通信局(站)系统防护及各级防护器件是相辅相成的,互相影响的,此时采用局部防护的过电压器件不能有效的发挥其防护性能,影响了通信局(站)的整体防护。
  1.0.8 由于本规范主要是解决通信局(站)因雷电感应引入的雷害,因此通信局(站)建筑物的防雷与接地还应符合国标 GB 50057-94《建筑物防雷设计规范》及通信行业防雷接地标准。

2 术 语

  2.0.1 根据国际电工委员会 IEC 1312 《雷电电磁脉冲的防护第一部分一般原则》将一个需要保护的空间划分为几个防雷区的原则,结合通信局站的具体情况,从电磁兼容的角度出发,通信局(站)作为一个欲保护的空间区域,由外到内可分为几个防雷区,以规定各部分空间区域不同雷电电磁脉冲(LEMP)的严重程度。
  通信局(站)防雷区的划分是参照 IEC 1312-l,1312-3 雷电电磁脉冲的防护第一部分《一般原则》和第三部分;《电涌保护器的要求》中的内容,并根据通信局(站)的实际情况进行划分的。主要目的是要确定 SPD 多级保护的原则。
  根据防雷区的划分要求,可将一个典型通信局(站)划分为几个防雷区,通信局(站)建筑物外部是直接雷击的区域,在这个区域内的通信设备最容易遭受雷害,危险性最高,是暴露区域,为 0 区;建筑物内部及被屏蔽的机房和通信设备的金属外壳,所处的位置为非暴露区,可将其分为 1 区、2 区和 3 区等,越往内部,危险程度越低,雷电过电压主要是沿各类导线引入的雷电传导过电压和附近雷问感应到各类导线及金属体上的过电压。保护区的界面通过外部的防雷系统、建筑物钢筋混凝土及由金属外壳等所构成的屏蔽层而形成,电气通道以及金属管道等则通过这些界面。穿过各级防雷区的金属构件必须在保护区的分界面做等电位连接(例如出人局的缆线屏蔽层应在 0~1 分界面处的进线室接地,而在局内仅在设备端做接地处理)。
  2.0.2 雷电活动区的划分是以1951~1985年全国年平均雷暴日数分布图和全国年平均雷暴日数区划图为基础,雷电活动区划分结果,直接关系到本规范的一个重要的立论基础,更重要的是雷电活动区划分结果又直接关系到工程设计的技术经济比。
  IEC 364-4-443《大气过电压和操作过电压防护标准》规定对于外部影响条件为:AQ1:代表一个低水平的雷电活动区域(年雷暴日小于等于25)。
  由于国家及各部标准都是将雷暴日大于如定义为多雷区(没有将雷暴日大于20就列为多雷区),一般都将雷电活动区分为少雷区、中雷区、多雷区和强雷区,这样的划分后,再采用不同的雷电过电压保护方案,才可能有较好的技术经济比和减少一些不必要的投资,因此本标准关于雷电活动区的划分是有充分依据的。
  年平均雷暴日数无法表达雷电强度的大小,在衡量一个通信局(站)遭雷击次数的概率分布时,还必须将通信局(站)所处的地理环境、通信局(站)建筑物的形式、本地区的雷电活动情况等因素进行统筹考虑。
  2.0.4 10/350μs是描述建筑物遭受直接雷击时的模拟雷电冲击电流波,脉冲为 10/350μs 波形的电荷量约为 8/20μs 模拟雷电冲击电流波电荷量的 20 倍。即:

         Q(10/350μs)≌ 20 Q(8/20μs)

  由于 10/350μs 模拟雷电电流冲击波的能量远大于 8/20μs 模拟雷电冲击电流波的能量,因此一般需要使用电压开关型 SPD(如放电间隙。放电管)才能承受 10/350μs 模拟雷电电流冲击波,而由 MOV 和 SAD 组成的 SPD 一般所承受的标称放电电流是 8/20 μs 模拟雷电冲击电流波。

3 通信局(站)雷电过电压保护设计

  3.1 一般规定

  通信局(站)雷电过电压保护设计,应根据通信局(站)内通信设备安装的具体情况,划分被保护区域,确定被保护对象,做到统筹设计、整体规划。并根据通信局(站)雷电电磁场的分布情况,对通信局(站)内接地引线进行合理布局。
  在一般规定中强调了建在多雷区、强雷区通信局(站)内的电力电缆(线)、通信缆线宜采用铝装电缆或敷设在金属管内的要求等措施。

  3.2 通信局(站)内网管系统的雷电过电压保护设计

  长期以来,通信局(站)设备防雷都是以防止雷电涌沿局外线路感应问题为主,随着通信设备的电子化。集成化、智能化。特别是数字通信技术发展,使得这些通信系统对浪涌较为敏感电路的雷电承受能力进一步下降,特别是通信大楼内计算机、控制终端、监控系统、终端设备更容易遭受雷电的侵害,由于在综合通信大楼内,集中了交换机、传输设备、监控及网络设备、控制终端、电源、无线等系统,各系统之间的内部连接线路纵横交错、非常复杂,连接线路可达 100~200m,这些连接线路受雷电电磁场的感应,将雷电浪涌传到系统之间的接口电路中去,对浪涌较为敏感的接口电路产生影响和冲击。局站内部接口的连接线类型较多,有屏蔽线和非屏蔽线,也有对称和非对称线,由于这些线缆物理结构上的差异,对雷电电磁场感应影响的大小也有所不同,因而就要求这些通信系统的接口应具有更好的防雷性能,IEC-61644 对连接通信、信号网络接口的浪涌保护装置提出了基本的要求和测试方法,ITU-T-K 系列文件对于各种通信系统的雷电保护和测试也提出了指导性方法,最近 ITU 推出的 K41 建议《电信中心内部通信接口抗雷电过电压能力》,在这个新建议中,主要涉及的是不出局且长度在 100m 左右的通信线路。该建议的推出表明,国际上已经将电信中心内部通信接口抗雷电过电压的要求提到很重要的位置上。另外由铁道部起草的、公安部发布的 GA 173-1998 计算机信息系统防雷保安器》中华人民共和国社会公共安全行业标准于1998年6月1日起开始实施。这些都说明通信局(站)内部或建筑物内部的计算机的雷电防护方法和所用的 SPD 已趋成熟,并走向规范化。
  另外根据原邮电部设计院从对深圳、江门、茂名、东范、韶关、南昌、湖南、河北、南宁等10几个省市的综合通信大楼雷害事故调查统计表明:楼内网络接口设备、计算机控制终端、交换机的 CPU 控制模块、交换机及移动通信的控制终端。微机接口电路、设备测试合、交换机计费系统微机、营业厅内的收费微机、营业用多路计费器、测量室自动测量系统以及监控系统等被雷击损坏的事故时有发生;另外移动通信基站、微波站内的网管监控及干线监控、遥信接口、数据采集板等设备也时有雷击损坏的事故发生,这表明计算机、控制终端及网络设备的接口是雷电浪涌侵人的薄弱环节,国外的研究表明:“作为现代数字化通信设备的控制计算机对雷电极为敏感。即使几公里以外的高空雷门或对地雷闪有可能导致这些通信设备的薄弱环节计算机CPU控制中心误动或损坏,根据国外资料介绍 0.03×10-4 T 的磁场强度可造成计算机误动,2.4×10-4 T 即可使元件击穿。”
  从另一个方面讲,国外厂商早在20世纪90年代初期(国内在95年前后)已经推出了大量的计算机、控制终端及网络设备用的 SPD,其产业已具有相当规模,其中用于计算机、控制终端及网络设备 SPD 的已经系列化,并且其质量和性能完全能满足通信系统的要求,另外由于半导体放电管的出现,其元件的特殊性及优良品质使得用半导体放电管元件组合的 SPD 可以免去每年的例行检测,且保证了通信系统安全可靠的运行。
  因此对通信局(站)计算机、控制终端及网络设备进行雷电过电压保护的条件已经成熟,从减少成本和合理投资的角度出发,本节仅对建在多雷区、强雷区通信局(站)内的计算机、控制终端及网络设备提出了雷电过电压保护要求,对于建在中雷区的通信局站内的计算机、控制终端及网络设备,如果该局时有雷击损坏事故发生,则应参照执行。另外从通信局(站)的调研情况看,现有的通信局(站)计算机、控制终端及网络设备数据线,由于各方向的线数不多、控制单元分散的缘故,一般都用的是无屏蔽的线,改为屏蔽线和串金属管线在施工和运作起来都有困难(垂直管线除外),而且成本将非常之高,那么安装 SPD 既经济、又方便,并且提高了通信系统安全可靠性。

  3.3 通信局(站)内信号线的雷电过电压保护设计

  3.3.4~3.3.6 通信行业标准目前还没有提出在通信局(站)使用总配线架保安器的应用要求,在 YD/T 69-1998《总配线架》技术要求中也未作规定,因此本规范根据雷电活动区的划分,对各类保安单元提出了应用条件。
  3.3.7 MDF就近接地是关系到配线架的保安单元能否对交换机用户板起到有效保护的关键问题。

  3.5 通信局(站)无线通信系统天馈线的雷电过电压保护设计

  3.5.2 根据对广东、福建、广西、湖南、浙江、辽宁等省移动通信基站的雷击情况调研,由天馈线引入的雷电浪涌损坏移动通信设备的事故概率是小概率事件,鉴于国内大多数移动通信基站的天馈线一般都未加同轴 SPD,因此本规定根据无线基站所处的具体的地理环境,确定了同轴 SPD 的安装原则,并根据电磁兼容的原理,提出同轴 SPD 接地端子的接地引线应在机房外接地。

  3.7 通信局(站)电源系统的雷电过电压保护设计

  3.7.1~3.7.3 参照中华人民共和国电力行业标准 DL 548-94《电力系统通信站防雷运行管理规程》中的相关条款及通信局(站)供电的实际情况制定该条款。由于原 GB 11032-89《交流无间隙金属氧化锌避雷器》正文的条款对 10kV SPD 是满足一般雷暴强度情况下的要求,而根据该标准附录D要求,对于建在郊区、山区,地处中雷区以上的通信局(站)使用的交流无间隙金属氧化锌避雷器是根据当地的雷电强度,由用户或设计者向厂商提出交流无间隙金属氧化锌避雷器放电电流要求,3.7.2条提出强雷电避雷器主要是避免在雷电较强的地区,设计误用常规的交流无间隙金属氧化锌避雷器,造成避雷器、配电变压器被雷击坏的事故。
  8.7.5 条中,“进入通信局(站)的低压电力电缆应全程埋地引入,其电缆长度应不小于 50m,……”是为了与原邮电部标准相关条款统一,参照 YD 2011-93《微波站防雷与接地设计规范》第2.0.10条及 X 005-95《通信局站电源系统总技术要求》第6.2.l条编写的,这一条款在许多实际工程中确实难以做到,其它单位在参与审查上述标准时已经提到,规定为 50m的根据是什么?从防雷的角度出发电缆的长度不是防雷要素,而电缆的埋地长度才是其防雷要素(从通信局站的实际情况及相关标准中都不能得到关于对电缆长度问题的答案),国家标准 GB 50057-94《建筑物防雷设计规范》第3.2.3条规定是埋地不小于 15m,《电力系统通信站防雷运行管理规程》规定,此段电缆长度可为大于 10m,因此 4.7.5条参照 GB 50057-94 改为“进入通信局站的低压电缆应全程埋地引入,其电缆埋地长度应不小于 15m”。
  3.7.7 根据雷电活动区的划分、通信局(站)的分类、通信局(站)所处的地理环境、建筑物的形式、供电方式,在设计中对电源用 SPD 提出的不同要求,对于开关型 SPD 的应用在 IEC 1643-1(P1),A2.0;IEC364-5-534; IEC1643-2;IEC1312 都有论述。
  电源用SPD通流容量和标称放电电流的取定依据参考了 IEC 1312《 雷电电磁脉冲的防护》、原邮电部标准 YD/T 944-1998《通信电源设备的防雷技术要求和测试方法》、2000年增补内容的国家标准 GB 5 0057-94《建筑物防雷设计规范》。冲击通流容量一般大于标称放电电流量级的 2.5 倍。
  电源用 SPD 通流容量和标称放电电流的取定还应根据电源 SPD 安装的必要性,其原则确定如下:
  ① SPD 安装在被保护电路中,对被保护电路无不利影响;
  ② 在正常情况下 SPD 是否会损坏;
  ③ SPD 损坏的后果会造成什么影响,采取什么措施进行保护;
  ④ SPD 能否起到保护作用;
  ⑤ 各级 SPD 之间的相互协调。
  另外在各类 SPD 能满足各级所需的标称放电电流前提下,为了保障 SPD 的可靠性,一般可选择较大量级通流容量的 SPD。单纯从价格的意义讲,冲击通流容量较小的 SPD 一般价格上远小于冲击通流容量大的SPD,但从技术经济比的角度去考虑问题,可能这一观点又喻于了新的含义,通流容量是指 SPD 不发生实质性破坏而能通过规定次数、规定波形的最大电流峰值,冲击通流容量较小的 SPD 在通过同样的雷电流条件下其寿命远小于冲击通流容量大的 SPD,根据有关资料介绍:“MOV 元件在同样的模拟雷电流 8/20μs, 10kA 测试条件下,通流容量为 135kA 的 MOV 的寿命为 1000~2000 次,通流容量为 40kA 的 MOV 的寿命为 50 次,两者寿命相差几十倍”由于配电室及电力室入口处的 SPD 要承受沿配电线路侵人的浪涌电流的主要能量,因此其 SPD 在满足入口界面处标称放电电流要求的前提下,可根据情况选择较大通流容量的 SPD。
  3.7.7条1中,供电线路对安装的限压型 SPD 回路中必须串接保险丝,主要防止限压型 SPD 因各类因素损坏、燃烧,对地短路(国内外通信局站发生过多次此类事故,国内外的防雷公司产品在工程上都要求采用串接保险丝),影响通信局站供电线路的正常工作。由于以往的规范忽视了串接保险丝,从而给通信局(站)的正常供电带来了隐患。 GB 50054-95《低压配电设计规范》中对配电系统上下级熔断器提出了基本要求。配电系统上下级保护电路的动作应具有选择性,以往由于我国保护电路较差,在低压配电系统中要做到是有困难的。目前低压电器发展较快,熔断器、断路器的特性已有很大的改善,按照新标准生产的NT型等熔断丝的选择比为1:1.6(其它类型的保险丝也可参照执行),具有三段保护的断路器也能大量生产,目前配电系统做到选择性已具备条件。
  3.7.8 两级 SPD 的隔距,按照国内外有关文献及标准,根据两级 SPD 的类型,SPD 对雷电反映时间的快慢,连接线缆的材料及粗细,当两级都为 MOV 时,连接线缆隔距一般要求为 3~5m;当两级 SPD 为不同器件时,连接线缆隔距一般要求为 10m 或连接线缆电感量为 7~15μH。
  3.7.15 条1中,原电力部标准 DL 548-94《 电力系统通信站防雷运行管理规程》和 YD 5087-98《通信工程电源系统防雷技术规定》以及多个标准规定了在直流配电屏输出端加装 SPD 的要求,在通信局(站)相应机房的直流电源配电柜(列柜)内加装 SPD,可以进一步抑制由雷电电磁场在直流馈线上感应的雷电浪涌电流,因此对于较大的通信局站,在相应机房的直流电源配电柜(列柜)中加装 SPD,从 SPD 的安装位置来讲,优于在直流配电屏输出端加装 SPD。若直流电源配电柜(列柜)已安装了 SPD,馈线在进人相应机房的直流电源配电柜(列柜)人口处,可不再安装 SPD。
  另外根据 YD/T 585—92 (通信用配电设备)5.4.8.l条直流配电设备输出电压及其整定范围的规定中整定范围确定了 SPD 的标称电压。该标准对 12~60V 配电设备的绝缘强度试验电压(有效植、时间为1min)的要求为 500V,因此此时相对于配电设备的耐雷击允许值要远大于 500V 的要求(一般雷电的允许值为工频的 6 倍左右),按照本规定对 SPD 的电压及标称放电电流的要求,此时 SPD 的残余电压一般小于 300V,远小于工频绝缘强度试验电压的要求。
  通信设备允许的直流供电电压有一定的变化范围,如交换设备工作电压的标称值为 -48V,但其允许的直流供电电压变化范围一般在 -40~-57V 之间,在通信电源工程设计时,由于采用了限制直流供电电压的变化范围的措施,使标称工作电压一般控制在 -48V 左右,现将 SPD 标称工作电压大于 70V,即 SPD 标称工作电压最小值已大于直流供电电压最大工作电压 -57V 的 20% 以上,因此该位足以避免因 SPD 指标的波动而影响设备的正常工作情况。

4 通信局(站)雷电过电压保护的接地要求

  4.0.2 本条款是参照 IEC 364-5-534 的规定及德国 VDE 100 第430部分对连接线的要求编制的,并参考了 ITU 《电信装置的接地手册》所提供的数据,保护导线的尺寸可以按照表4-1的要求,另外由于机械原因和为了简单起见,它们通常比需要的更大一些。
  4.0.3

5 SPD 的选型原则

  5.1.3 根据 IEC 1312,IEC 1643-1 及 ITU-T K.36(保护装置的选择),SPD 可由气体放电管,放电间隙,MOV,SAD,齐纳二极管,滤波器,保险丝等元件混合组成。这些元器件组成的 SPD 在国内通信局(站)已经广泛使用。

  5.2 电源用 SPD

 

[打印本页][字号 大中小] [关闭]

51防雷,版权所有,部分文章采集于网络,仅用于学习交流,如有侵权,请联系删除!
51防雷 » 《通信局(站)雷电过电压保护工程设计规范》(YD/T 5098-2001)条文说明

发表评论

提供最优质的防雷产业资讯

立即查看 了解详情